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Abstract

Recently, Sarhan [8] introduced a new distribution named generalized
quadratic hazard rate distribution. In this paper, we deal with the problem
of estimating the parameters of this distribution based on Type II censored
data. The maximum likelihood and least square techniques are used. For
illustrative purpose, the results obtained are applied on sets of real data.
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1. Introduction

Recently, many new distributions, generalizing well-known
distributions used to study lifetime data, have been introduced.
Mudholkar and Srivastava [6] presented a generalization of the Weibull
distribution called the exponentiated(generalized)-Weibull distribution,
GWD. They showed that this generalization not only includes
distributions with bathtub and unimodal hazard rates but provides a
broader class of monotone hazard rates. The generalized exponential
distribution, GED, introduced by Gupta and Kundu [3]. Nadarajah and
Kotz [7] introduced four exponentiated type distributions: the
exponentiated gamma, exponentiated Weibull, exponentiated Gumbel,
and the exponentiated Frchet distribution. They provided a treatment of
the mathematical properties for each distribution. Sarhan and Kundu [9]
presented a generalization of the linear hazard rate distribution called
the generalized linear hazard rate distribution, GLFRD. They explained
that this distribution can have increasing, decreasing and bathtub
shaped hazard rate functions which are quite desirable for data analysis
purposes. Sarhan et al. [10] obtained Bayes and maximum likelihood
estimates of the three parameters of the generalized linear hazard rate
distribution based on grouped and censored data. Recently, Sarhan [8]
introduced a generalization of the quadratic hazard rate distribution
called the generalized quadratic hazard rate distribution (GQHRD).

We intend, in this paper, to estimate the unknown parameters of the
GQHRD based Type-II censored data.

The generalized quadratic hazard rate distribution generalizes
several well known distributions. Among these distributions are the
quadratic hazard rate, the linear failure rate, the generalized linear
failure rate, the generalized exponential and the generalized Rayleigh
distributions.

The GQHRD may have an increasing (decreasing) hazard function or
a bathtub shaped hazard function or an upside-down bathtub shaped
hazard function. This property enables this distribution to be used in
many applications in several areas, such as reliability, life testing,
survival analysis and others.
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The traditional quadratic hazard rate distribution with three
parameters a, b, ¢, denoted as QHRD(a, b, ¢), has the following cdf:

F(x; a,b,¢)=1- exp{— ax —%xz —%xg}, x>0, (1.1)

where a >0,c >0 and b > —-2vac. This restriction on the parameter

space 1s made to be insure that the hazard function with the following

form is positive, see Bain [1],
h(x; a, b, ¢) = a + bx + ex?, x> 0. (1.2)

The QHRD (a, b, ¢) generalizes exponential, Rayleigh, Weibull with

shape parameter equals 3 and linear hazard rate, see for example Bain

[1]. Obviously, the exponential distribution (say ED(a)) can be obtained
from QHRD (a, b,c) when b =0,c=0, the Rayleigh distribution
(say RD(b)) can be derived from QHRD (a, b, ¢) when a =0, ¢ = 0, the
Weibull with shape parameter equals 3(say WD(c, 3)) can be derived
from QHRD(a, b,c) when a=0,b=0 and linear hazard rate
distribution (say LFRD (a, b)) can be derived from QHRD (a, b, ¢) when
c=0.

Sarhan [8] introduced the generalized quadratic hazard rate
distribution with four parameters a, b, ¢, d and denoted by GQHRD
(a, b, ¢, d). The cdf of GQHRD (a, b, ¢, d) takes the form,

F(x;a,b,c,d)=|1-e

d
_ b,2,¢,3
(ax+2x +ex ):| x>0, (1.3)

WhereaZO,CZO,d>0ande—Zx/%.

It is important to mention here that when d is a positive integer, the
cdf of GQHRD (a, b, ¢, d) represents the cdf of the maximum of a simple

random sample of size d from the QHRD (a, b, c).

This distribution generalizes the following distributions: the
GLFRD (a, b, ¢) when ¢ = 0; the GED (a, d) when b =0,c =0, a > 0;
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the GRD (b, d) when a=0,c=0,b>0; and QHRD(a, b, c) when
d=1.

The main object of this article is to estimate the four unknown
parameters of the GQHRD (a, b, ¢, d). We use the maximum likelihood

and least squares procedures to derive such estimates. The estimators
are obtained by using the data of type II censoring testing without
replacement. Also the asymptotic confidence intervals of the parameters
are discussed. Further, we study whether this distribution fits a set of
real data better than other distributions. Two criteria are used for this
purpose. These are the Kolmogorov-Smirnov test statistic and the values
of the log-likelihood function. Monte Carlo simulation technique is used
to study the performance of the estimators obtained. For this purpose, we
used the mathematical program MATLAB 7.

The rest of this paper is organized as follows. Some properties of the
GQHRD (a, b, ¢, d) are presented in Section 2. Section 3 presents the

model assumptions and notations. Section 4 gives the parameter
estimations using both maximum likelihood and least squares
techniques. We use a set of real data in Section 5 as an application.

2. The GQHRD

The survival function of the GQHRD (a, b, ¢, d) takes the following

form

d
(awsb?icy
(axtga™gs )} . t>0. 2.1)

Sit)=1- {1 —e
The pdf of the GLFRD (o, B, v) is the probability density function,
pdf of GQHRD (a, b, ¢, d) takes the following form

_ b.2,.¢.3 d-1
f(x, a, b, C, d) = d(a+bx+cx2)|:1_e ((lx+2x +3x )i|

—(ax+%x2 +%x3 )

,x2>0. (2.2)
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Figure 1 shows some patterns of the pdf of GQHRD (a, b, ¢, d), which

may have a single mode or no mode at all.
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Figure 1. Different patterns of the probability density function.
The hazard rate function of GQHRD (a, b, ¢, d) is

c.3
d(a+bx+cx2){1—e 2" 3 2" 5"

1 {1 B e—(ax+%x2+§x3 )}d

d-1
~(ax+2x?+<x? } ~(ax+2x?+<
e

h(x; a,b,c,d)= . (2.3)

The hazard rate function is such that:
e if d =1, the hazard function is either increasing (if b6 > 0) or constant

(ifb = 0and a > 0);

e when d > 1, the hazard function should be: (1) increasing ifb > 0; (2)
upside-down bath-tub shaped if b < 0; and

e if d < 1, then the hazard function will be: (1) decreasing if b = 0 or (2)
bath-tub shaped if b # 0.

Figure 2. shows different patterns of the hazard rate function.
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Figure 2. Different patterns of the hazard rate function.
3. Parameters Estimation

In this section, we use the maximum likelihood and least squares
procedures to derive point estimates of the unknown parameters of the
GQHRD(q, b, ¢, d). Also, we will derive the asymptotic interval
estimates of the parameters.

Henceforth we shall consider the data of type II censoring testing
without replacement. In such type of data, it is assumed that n identical
items are put on the life test. The testing process is terminated at the
time of rth item failure. The number of observations r is decided before
the data are collected. Assume the r times to failures are xq, xg, ..., x,.
Let x denote the information obtained from the life testing. It means the
number of all items to be tested n, the number of failed items r, and their
times to failure. That is x = {n, r; x1, xg, ..., x, }. It is assumed also that
the life time of each item follows the GQHRD (a, b, ¢, d) with cdf given
by (1.3).

3.1. The maximum likelihood estimators

In this subsection, we use the maximum likelihood procedure to
derive the point and interval estimates of the parameters.
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3.1.1. Point estimators

The likelihood function of x is, see Lawless [4],

L(x) = {S(x,; a, b, c, d)}(nr){Hf(xi; a, b, c, d)} (3.1)
i=1

Substituting (2.1) and (2.2) into (3.1), we get

d-1
r b 2, c.3
—(ax;+=x+=x; r b2 ¢ 3
L(x)=d" I I (a+bx; +cx? ){l—e (oo +5% )} e~ 2im (a%i+5x; +5%;)
i=1

(n-r)

¢ d
{1 ) {1 ) e(axﬁgxhx?)} } | 59

The log-likelihood, denoted £(x), is

~
~

I r
E(g):rlnd—ain—g x?—% x§+ In (a + bx; + cx?)
i=1 =1 1=1 =1

+Lx3 d
3%} } (3.3)

Calculating the partial derivatives of £ with respect to a, b, ¢, d and

equating each to zero, we can get the likelihood equations as in the
following system of nonlinear equations of a, b, ¢ and d.

In |:1 B e—(axr +%xr2 +%x;°’ )}

—d’
B |:1 B e—(ax, +%x§ +%x§ )}

3 r

r —(ax: +2x2 1 L5
0=§+Zln{1—e RN )}+(n—r)z
i=1 i=11

r r r

0= —in + Z;Q +(d- 1)2 (axi+éx;ci£x3)

i=1 i1 @ +bx; +cxj i=1 o 27 3T

1
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—(axr+ by2 —x, )|: (axr+ xr+ Xy ):|
e —e

1_|:1_e (axr+ x,+— ):|

d-1
( )Z axl+ x?)

-(n-rix,d

>

) lla+bx + cx? = 1
e—(ax,+ x2+< S ){ —(axr+ b2 +—xr )}
-2 (=) ,
1_|:1_ ~(ax,+2 x,.+ x5 ):|
r r 2 3
1 3 x; x;
0=-1V 3,y 5 (d 1)
3i=1 ! Zla+bx +cx2 Z (axﬁgxler ?)_1
e—(axr+%x?+§x§){1 B e—(ax,+ x2+E Sy ):|
1 3
-3 (n—r)x2d (3.4)

d
1 |:1 B e—(owcr+%xg+§x;3 ):|

To find out the maximum likelihood estimators of a, b, ¢ and d, we

have to solve the above system of nonlinear equations (3.4) with respect
to a, b, ¢ and d. As it seems, this system has no closed form solution in

a, b, ¢ and d. Then we have to use a numerical technique method, such
as Newton-Raphson method, to obtain the solution.
3.1.2. Asymptotic confidence bounds

Since the MLE of the parameters cannot be derived in closed forms,
we cannot get the exact confidence bounds of the parameters. The idea is
to use the large sample approximation. The maximum likelihood
estimators of 0 = (a, b, ¢, d) can be treated as being approximately
multi-normal with mean 6 and variance-covariance matrix equal to the
inverse of the expected information matrix. That is,

(6-0)— N4(07 I‘l(é)), (3.5)
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where I (6) is the variance-covariance matrix of the unknown

parameters 0. The element Iij(é), i,j=1,2 3,4, of the 4 x 4 matrix
I is given by

1;;(8) = ~Loo, lo-p- (3.6)

Using the first derivatives of £, the second partial derivatives of the

log-likelihood function are derived in the Appendix.

Therefore, the approximate 100(1- 9)% two-sided confidence

intervals for a, b, ¢, d are, respectively, given by

G+ Zg o111 (6), b+ Zy1oNT25(0), ¢+ ZgayT53(0), d+ Zg5VT44(0).

Here, Z9/2 is the upper (9/2)th percentile of the standard normal
distribution.
3.2. The least squares procedure

In this subsection, we shall derive the least square estimators (LSEs)
of the four parameters a, b, ¢, d. Given the observed lifetimes x; < x9 <

... < X, 1n a certain censored sample from the GQHRD (a, b, ¢, d). Then

the least square estimates of the parameters a, b, c, d, denoted

ag, I;R, CRr, d r respectively, can be obtained by minimizing the following

quantity with respect to a, b, ¢, d

o | —ax;-Lx2-Ly? d)?
Q=Z Fi—{l—e b2 3’} ; @3.7)
1=1

where F, = F(x;) is the empirical estimate of F(x) at the observation

x;,1=1,2,..., m.

That is to get ap, I;R, CR, c:lR, we have to solve the following system

of non-linear equations with respect to a, b, ¢, d.

The partial derivatives of @ with respect to a, b, ¢, d are respectively
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d
oQ | A |: —ax; by :| .
—=* = _9d F.—|1-e 270 3% FQ,G,(_’)C'),]:]_,2,3,
66] LZI:{ L AN
oR o | - —axf%xffgx? d d
= —22 F—[1-e [Fo(x)]? In Fo(x;),  (3.8)
1=
where 0; = a, 05 = b, 05 = ¢ and
—ax: b2 _c,3
Fglx;)=1-e @ 2707370

—ax; B2

1 .
Fq. o;(xi) = Safe 0 20 7

Setting Q _ 0 @ _0Q 26 = 0, we shall get the following system

da ~ob oc od
of non-linear equations

2. T —ax;—bx2-C -3_d
O:ZFi—l—e SR FQ,ej(xi),j=1,2,3,

m [ b2 e,
0= Z{Fl - efah 271 371 }[FQ(JCL )]d In FQ(.’XIL) (39)

Solving the above system with respect to a, b, ¢, d, we can get the LSEs

4R, bg, ¢g, dp. As it seems the above system has no explicit solution.

Therefore, we have to use a numerical technique to get the solution.
4. Illustrative Examples

In this section we present practical applications of the theoretical
results discussed in the preceding sections with two examples. One
example involves a large sample and the other with a small sample.

4.1. Example 1

This example is from McCool [5] giving the fatigue life in hours of ten
bearing of a certain type. These data are as follows:

152.7, 172.0, 172.5, 173.3, 193.0, 204.7, 216.5, 234.9, 262.6, 422.6
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In this case, if we assume a Type-II censored sample of size m = 8, we

obtain the maximum likelihood estimates of the parameters of the
following distributions: (1) E(a), (2) R(), (3) QHRD(a, b, c¢), (4)
GE(a, b) (5) GR(a, b), (6) GLFRD (a, b, ¢) and (7) GQHRD (a, b, c, d).
Also, we compared these four distributions to fit the data. For comparison
purpose, we use: (1) the likelihood ratio test statistics and the
corresponding p-value, and (2) the mean square of the difference between
the empirical cdf and fitted cdf, say MSD, using each model. Not that
MSD is computed by the following relation

S 2
MSD = LN (f; - FE;),
i=1

where Fl and FE; are the empirical and the estimated cdf computed at
x;. The estimated cdf is computed by replacing the parameters of the

model adopted with their the MLE. Table 1, gives the results obtained.

Table 1. The results for example 1

Dist. Parameter estimates L A p-value MSD

E 50915 x10-3 52129 | 20691 | | o0 o4 | 0.04021

R 5,058 x10-5 47195 | 10.823 | 0.013 0.02306

QHRD 1 049x1073, —7.534 x1075,| 45536 | 7505 | & 150,103 | 001678
5.741x1077

GE 6.649 x 1073, 2.205 -A8.978 | 14378 | g 550« 1074 | 002684

GR 6,597 x 105 2,103 44,466 | 5.364 | 0.068 0.01064

GLERD 10 001, 7.316 x1075, 3.278 | “43:764 | 3:961 | 0.047 8.222x1073

GQHRD | ¢ 318,1078, ~5.451x1072,| “41:784 9.635x1073
1.035x1078, 4.221

The results shown in Table 1 imply that the GQHRD fits the given data
better than all other distributions mentioned above.
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4.2, Example 2

The data set is given by Birnbaum and Saunders [2] on the fatigue

life of 6061-T6 aluminum coupons cut parallel to the direction of rolling

and oscillated at 18 cycles per second. The data set consists of 101

observations with maximum stress per cycle 31000 psi. The data are

presented in Table 2.

Table 2. Fatigue lifetime data presented by Birnbaum and

Saunders [2]

70

109
124
131
138
146
162

90

112
124
131
138
148
163

96

112
124
132
139
148
163

97

113
124
132
139
149
164

99

114
124
132
141
151

166

100
114
128
133
141
151
166

103 104 104
114 116 119
128 129 129
134 134 134
142 142 142
152 155 156
168 170 174

105 107 108
120 120 120
130 130 130
134 134 136
142 142 142
157 157 157
196 212

108

131
136
144

157

108
121
131
137
144

158

109
123
131
138

159

Assuming Type-II censored samples with different sizes m = 101, 100,
95, 90, 80, 70, 60, and 50, we obtain (1) the maximum likelihood
estimates of the parameters of the GQHRD (a, b, ¢, d); (2) the standard

deviation of the parameter estimates; and (3) the 95% confidence

intervals of the parameters. Tables 3-5 gives the results obtained.

Table 3. MLE of the parameters a, b, ¢, d for example 2

r a b c d
101 | 2.023x107% | —=5.581x107° | 3.009x10°6 | 5-592
100 | 6.325x107° | —1.081x107* | 3.329x107¢ | 8.054
9 6.1x10° | ~1.094x107* | 3.393x1076 | 8.059
90 6.097x107° | —1.081x10™* | 3.382x107¢ | 8.051
80 7.769x107° | —1.918x10™* | 3.907x107¢ | 7.186
70 8.001x1073 | —2.578 x107* | 4.462x1076 | 6.146
60 7177x107% | —1.217x107* | 3.352x10°6 | 8275
50 7175x107 | —1.197x107* | 3.381x1076 | 8.522




ESTIMATIONS OF THE PARAMETERS OF THE ...

Table 4. Standard deviation of the MLE of parameters a, b, ¢, d for

example 2
r a b c d
101 9.386x10°° | 3.549x107* | 2.324x10°6 | 6.658
100 0.017 3.357x1074 | 2.153x1076 | 11.801
95 0.015 3.610x107* | 2.352x1076 | 10.794
90 0.014 3.801x107* | 2.456x1076 | 8.829
80 0.013 4127x107* | 2.654x1076 | 5.231
70 0.013 4.347x107* | 2.863x1076 | 3.479
60 0.020 5.092x107* | 3.462x1076 | 12423
50 0.021 5712x107* | 3.984x1076 | 13.34

Table 5. 95% Confidence intervals of the parameters a, b, ¢, d for

example 2
r a c d
1011 (0,0.020) | (751451074, 6.398x1074) | (0,7.564x1076) | (0-18.642)
1001 (0,0.039) | (_7660x107%,5.497x107%) | (0,7.548x1076) | (0-31.189)
9 10,0086 | (_g169x1074,5.981x1074) | (0,8.004x10°6) | (0>29:215)
90 10.0.084) | (_g539.1074,6.370x1074) | (0,8.195x1076) | (0 25.355)
80 1 (0,0.084) | (_1001x1073,6.171x107) | (0,9.109x1076) | (0> 17437
70 10,0083) 4 110x107,5.943x1074) | (0,1.007x1077) | (0-12:965)
60 1 0.0046) | (_1120x1073,8764x1074) | (0,1.014x107%) | (©:32.623)
50 1 (0.0.048) | (_4939,1073,9.999x107%) | (0,1.119x107?) | (0 34.668)
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5. Conclusion

In this paper we discussed the parameter estimation of the
GQHRD (a, b, ¢, d) based on Type-II censored data. The maximum

likelihood and least square techniques have been used. The
GQHRD (q, b, ¢, d) is tested against different distributions using a set of

real data. Based on the two criteria (the values of the log-likelihood
function and average K-S test statistics), we found that the GQHRD

(a, b, c, d) fits the data better than those compared distributions.

Further, we used another real data set with a large size to derived the
asymptotic confidence intervals of the parameters with different

censoring sizes.

Appendix

The second partial derivatives of the log-likelihood function can be
derived as in the following forms.

d 2
(n B m)|:1 B e—(axm+%x,2n+%x;n’n):| |:1n {1 B e—(axm+%x,2n+§x§,, ):| :|

%L _-m
2 - 2 2 ’
ol [_1{1 e <)ﬂ
o’L i x;
odoa — {e(axi +%xlz +§xi3) B 1:|
(n m)dx axm+bxm+§ x3 |:1_e—(axm+bxm+§x,3n):|2d1 1n|:1 . (axm+lz)xm+§x,3n):|

—(axpy +Lad +Sx3) a7
—1+[1—e moeTms ”‘}

d-1
b 3 _ b 3 _ b 3
(n - m)dax,e (owcm+2xm+3 |:1—e (axm+2xm+3 } 1n|:1—e (axm+2xm+3 :|

1+ |:1 e (axm+gx,2n+ xm)}

+
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d-1
(n B m)x e—(cwcm+127x,2n+—xm)|:1 B e—(axm+gx,2n+%x§n :|
m
+ )
14 |:1 B (axm+%x,2n+ xm):|
adab 2 £ {e(axﬁ % +§x§) 1}

2d-1
(n m)dx2 e_(ax””lz)x’%”gx’i){l e_(ax'"+l2)x'2"+§x'3")} In {1 e_(amergx'zﬂgx'S")}
_ m _ -

—(ax 12,2 +£x3) a7y
—11{1— meeTm 3”‘}

d-1

b2 3 b2 3

(n ) x2 e_(axm+2xm+gxm)|:1 e (axm+12’xm+§x;3n } 1 |:1 e_(axm+2xm+gxm)i|
—m)dx“m — nll-

1

+l

d

2 _1+|:1 . (axm+gx,2n+ xm):|

-1
(n—m)x (axm+12’x,%L+ xm){l_e(amergx,%LJr xm)}

1
+_
2

d
14 {1 B e—(axm+%x,2n+§x§n )}

3

x
b2 3
(ax; +2 9%; +§xl ) 1:|

e

1 m
adac_§Z{

2d-1
2 3 2 2 3
—(ax,, +me+§xm )|:1 B —(axm+l2’xm+ X ):| In |:1 B e—(axm +%xm +§xm)

(n—m)dxle 2
b2 e.,1d
[_1+{1 (axm+2xm+§xm):|
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d-1

2 3 9 5 ) .

(n—m)dx;) ef(ax'" SR )[1 - e’(axm+%xm+§xm )J ln [1 - e*(axm +haZ 122 )}
m

L
’ d
_1+|:1_e_(ax1n+12)xa+3x§n):|
-1
(n_m)xse (axm+l2)xr2n+ xm)|:1—e(axm+12)xr2n+—xm):|
1
E ’
3

d
—1+|:1— (axm+gx’2"+ xm)}

3 2 (ax;+bx?+<a?)
Z 5 —(d- 1)2 :
= (a + bx; + cx; ) i=1 {e(axﬁ%x%gx?) ) 1}

:)C 2 —(ax b 2d-2
+= 3
(n m)d2 2 e ( m xm *3 3 ] ( m= 9 L 3 L

2
—(axyy +2x2 +<x3)) d
_1+ 1—e m = g<m g m
d-2
2 3 9 5
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